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Abslract--Reccnt experinaents have shown that a transient, buoyant, laminar and one-dimensional flow 
adjacent to a vertical flat surl:ace may become vigorous enough to begin a transition process from laminar 
to turbulent flow. The disturbance amplification characteristics of such a flow are analyzed using linear 
stability theory. The Orr-Sommerfeld equations for stream function and temperature disturbances are 
formulated for an imposed constant and uniform base surface heat flux Thcsc equations are solved for 
water, Pr = 6.7, with a step in surface heat flux from zero to a non-zero value. The temporal amplification 
of the disturbance components is found as a function of their frequency. The results are plotted on a 
stability plane which shows that the selective anaplilication found in steady, downstream-developing 
buoyancy driven flows also occurs in transients. The new results are shown to be in moderate agreement 
with recent measurements. Temperature and velocity disturbance profiles across the boundary region are 
also examined. For the same boundary conditions, the qualitative effect of Pr on the temporal growth of 

disturbances is also discussed. 

1. I N T R O D U C T I O N  

THE TRANSIENT behavior  of  laminar  buoyancy-  
induced flows has been extensively studied through 
analysis and experiment ,  as this behavior  has impor-  
tant  appl icat ions  in many  natural  and  industrial  pro- 
cesses. Because many of  the appl icat ions  involved vig- 
orous  flows which tend to undergo transi t ion to 
turbulence,  it is useful to examine the initial insta- 
bilities leading to that  t ransi t ion in a one-dimensional  
t ransient  flow. 

I. 1. Pret, tous transient huoyam3'-hTducedflow studies 
The first s tudy of  a t ransient  buoyancy  driven flow 

[I] concerned an initially quiescent fluid with a flow 
generated by a step in the tempera ture  of  a doubly  
infinite flat surface, for Pr = 1. The assumpt ion  was 
made that  the flow was independent  of  the down-  
s t ream coordinate ,  parallel to the plate. This assump- 
tion results in heat  t ransfer  only by conduc t ion  (see 
Section 2.2). Later  studies [2, 3] obta ined  solut ions for 
an arb i t ra ry  Prandt l  n u m b e r  and several addi t ional  
kinds of  thermal  bounda ry  condit ions.  Exper iments  
in water  [4] with a M a c h - Z e n d e r  in terferometer  con- 
firmed the one-dimensional  flow assumpt ion  for shor t  
times. 

1 Present address : Department of Mechanical Engineer- 
ing, Purdue University, West Lafayette, IN 47907, U.S.A. 

Siegel [5] analyzed a t ransient  buoyancy- induced 
flow next to a semi-infinite vertical flat plate using 
approximate  profiles suggested by Eckert  [6]. Both 
wall temperature  step and wall heat flux step bound-  
ary condi t ions  were studied for Pr  = I. Siegel identi- 
fied three regimes dur ing the transient response:  
(I)  purely conduct ive  heat  transfer, with a cor- 
respondingly one-dimensional  flow field; (2) truly 
t ransient  flow, with all of  the terms in the transient  
Navie r -S tokes  equat ions  of  abou t  the same order ;  
and, (3) the final approach  to steady-state,  a quasi- 
static regime. Several experimental  studies in air and 
water  [7-10] confirmed these and o ther  theoretical 
predictions_ 

Goldste in  and Briggs [I 1] analyzed the flow ad- 
jacent  to vertical plane and cylindrical surfaces and 
predicted the length of  time the one-dimensional regime 
is valid, as a funct ion of  the distance downstream_ The 
experiments  in ref. [4] agreed with this analysis. Brown 
and Riley [12] reported calculat ions which predicted 
a slightly faster penet ra t ion  rate for the leading edge 
effect. 

1.2. LhTear stability theorr applied to buoyancy-induced 
~Iow 

There  have been many studies of  the downst ream 
transi t ion to turbulence in steady buoyancy- induced 
flows. They have generally shown that  this t ransi t ion 
in l aminar  bounda ry  layer flows arises from the pres- 
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N O M E N C L A T U R E  

A* transient flow vigor parameter, defined in 
equation (25) 

c" wall thermal capacity [J m- -" K -  b] 
Cr phase velocity 
F similarity velocity 
g gravitational acceleration [m s 2] 
G* steady flow vigor parameter, defined in 

equation (26) 
H similarity temperature 
i ~ / - 1  
k thermal conductivity [W m- ~ K-  ~] 
P , p  motion pressure [N m 2] 
p' disturbance motion pressure [N m- 2] 
Pr Prandtl number 
q" power dissipation per unit wall area 

[Wm--']  
Q* generalized thermal capacity effect 
R ratio defined in equation (36) 
s generalized disturbance temperature 
t temperature [K] 
t' disturbance temperature [K] 
U, u ,,--velocity [m s- ~] 
u' disturbance x-velocity [m s ~] 
V, c y-velocity [m s ~] 
t" disturbance y-velocity [m s ~] 
x, y Cartesian coordinates [m]. 

Greek symbols 
:~,/3 generalized eigenvalues 
~V thermal diffusivity [m-' s- ~] 
fit coefficient of thermal expansion [K - '] 
6 thermal penetration length [m] 
q similarity variable 
0 temperature excess, tb - t~_ [K] 
v kinematic viscosity [m'- s- t] 
p density [kg m -~] 
r time [s] 
4' generalized disturbance streamfunction 
~O' disturbance streamfunction [m'- s-~] 
f~* generalized time-independent frequency, 

defined in equation (35)_ 

Subscripts 
b base flow 
i imaginary 
r real 
o reference quantity 
ov ambient and initial. 

Other symbols 
- dimensional quantities 

r/derivative (except where noted) 
NSC neutral stability curve. 

ence of initially small disturbances. Experiments have 
shown that the consequence is the amplification of 
sinusoidal disturbance components. In the region 
where the disturbances have small amplitude, linear 
stability theory has been a very successful model of 
their downstream behavior. Linear theory assumes 
disturbances small enough that the higher-order dis- 
turbance terms may be neglected. The goal is to deter- 
mine the behavior of the constituent disturbance com- 
ponents. Will they amplify, decay, or remain the same, 
as a function of their frequency and the base flow 
vigor parameter? (This parameter is G* for two- 
dimensional steady flows and A* for one-dimensional 
transient flows, which are defined in equations (25) 
and (26).) 

The first complete solution which applied linear 
stability theory to these problems was by Nachtsheim 
[13]. The buoyancy effect in the disturbance 
equations, which had been left out in previous studies 
due to computational difficulties, was retained. Sev- 
eral studies in the next few years refined the method of 
calculating instability conditions and produced very 
important results. These results were supported by 
related experimental work. Knowles and Gebhart [14] 
found neutral curves over a range of Pr and showed 
that the calculated eigenfunctions agreed very well 
with their measurements in silicone oil (Pr = 7.7) [14, 
15]. These data also confirmed the analytical pre- 

diction that the maximum value of the velocity dis- 
turbance occurs at the same cross-stream location as 
the maximum base flow velocity, not at the base flow's 
point of inflection, as generally predicted by inviscid 
analysis. 

Dring and Gebhart [16] extended the above analysis 
into the unstable region far downstream of the neutral 
curve location. It was discovered that, as the vigor 
parameter G* increases, an increasingly narrow band 
of frequencies is more highly amplified than all the 
rest. This result was confirmed by experiment [17] and 
by further analysis over a larger range of the vigor 
parameter and Pr [18]. This selective amplification of 
frequencies is not found in similar calculations on 
forced flows, such as the Blausius-type flows, where 
all disturbances, no matter how low the frequency, 
eventually decay. 

The studies above concerned themselves with the 
downstream development of disturbances in two- 
dimensional steady boundary layer flows. An exper- 
imental study [19] discovered that the initial devel- 
oping one-dimensional transient flow, the purely 
conductive regime discussed previously, may become 
vigorous enough to begin a transition process before 
the flow was swept away by the local arrival of the 
leading edge effect. These data showed that measur- 
able disturbances appear in the one-dimensional flow 
at times before the arrival of the leading edge effect 
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predicted [12]. The disturbances also arise at approxi- 
mately the same time throughout the downstream 
region of the one-dimensional flow. That  is, the down- 
stream distance seems to have no influence on the 
appearance and temporal growth of  these dis- 
turbances; they are also one-dimensional A fast 
Fourier  transform analysis of  these data indicated 
that these disturbance frequencies are concentrated in 
a narrow band around the same characteristic fre- 
quency as in a similar two-dimensional steady flow. 
This remarkable result is developed further in Joshi 
and Gebhart  [19]. 

The present study concerns this region of  one- 
dimensional transient instability and transition. 
Applying linear stability theory, a stability plane is 
generated for P r =  6.7 and compared to available 
data. Neutral  curves are also found for a range of  Pr. 
The resulting eigenfunctions for P r =  6.7 are com- 
pared to their counterparts in steady two-dimensional 
flows. 

2 .  P R O B L E M  F O R M U L A T I O N  

2. I. Full  equat ions  

The analysis will be of  the flow resulting from an 
instantaneous change in the thermal boundary con- 
dition of  a doubly infinite vertical flat surface at t~ in 
contact with a quiescent fluid, also initially at t~ The 
type of  change considered here is a step from no 
surface energy input to an input at a uniform, constant 
and finite level, q". 

The analysis is based on the two-dimensional 
Navier-Stokes  equations for buoyancy-induced 
flows. The buoyancy force is in the vertical direction 
only, i.e. parallel to the surface (see Fig. 1). The energy 

a~ = _¢_ 
all 1. 

J~ 

~r) g 

t(=, u, 0 

U 

v 

FIG. 1. System geometry. 

equation also arises, in which the viscous dissipation 
and pressure work terms are neglected_ The two Bous- 
sinesq approximations are applied These assump- 
tions are that the density is linearly related to tem- 
perature and that the density change due to 
temperature is a small fraction of  the ambient fluid 
density. All fluid properties other than density in the 
buoyancy term are taken to be constant and uniform. 
The general two-dimensional equations for velocity, 
temperature and the motion pressure are : 

~TU ? V  
?_x- + ~ = 0 (1) 

~U 8U ~U 1 ~P 
., + U  + V ~  = v V 2 U  - + g f l v ( t - t ~ )  
c'~ ? x  • p ?,.x 

(2) 

(~V ?V 8V 1 ~P 
+ U~x + v ~  = ,,v'- v -  (3) 

8~ _ p ~j' 

8t c~t Ot 
i~ z + U ~;x + V ~'h' = =vV2t (4) 

U(x ,  O, r) = U(x ,  ~ , ,  r) = U(x, ,v ,  O) = 0 

l / (x ,O,~)  = V ( x , ~ , r ) =  V ( x , y , O ) = 0  

t (x ,  ~ ,  T) -- G = t (x .  y ,  O) -- t ~ = 0  

¢3t q" 
~(x ,0 ,~)+  ~ = 0 (5) 

Equations (1)-(4) are the conservation of mass, 
momentum and energy. 

The velocity, temperature and pressure are each 
taken as a sum of the base flow quantity and a small 
disturbance 

U =  Ub+u ' ,  V =  Vb+v'  

t = th+ t ' ,  P = Pb+P' -  (6) 

In the analysis of  the disturbance behavior, the base 
flow is found first. The disturbances are then pos- 
tulated and are superimposed on the base flow solu- 
tion to determine the time dependent disturbance 
behavior. 

2.2. Base f l o w  
The mechanism to be analyzed is the initial transient 

regime found in experimental, numerical and ana- 
lytical studies, most recently in ref. [19]. The transient 
base flow is a solution to equations (1)-(5). In this 
one-dimensional regime, there is no variation in the 
x-direction of  the base flow quantities_ The continuity 
equation (1) becomes: 

or .  
- 0  or l / b=  Vb(T) only_ (7) 

Applying the boundary condition for Vb, it is seen 
that V b = 0 everywhere and for all time. This result 
and the x-independence of  the base quantities reduce 
equations (2)-(5) to 
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i ~ Ub ? 2 Ui, 
- v  . , + g / J ~ 0  ( 8 )  ~z Cl'- 

2Ph 
0 - (9) 

?_r 

gO ?20 
- -  = ~ r  - ~ ( 1 0 )  
/~r cy-  

Uh(0, r) = U , ( ~ ,  r) = Uh(.v, 0) = 0 

O( ~,, ~) = O ( y ,  O) = 0 

~;0 q" 
? l , +  k = 0  ( r > 0 ) .  (11) 

No base flow convective terms arise in these equations_ 
The only remaining transfer mode of  heat and 
momentum transfer is diffusion. 

The existence of  a similarity form for these equa- 
tions may be confirmed using a transformation group 
method [20]. This method produces the forms of  the 
independent and dependent variables for the simi- 
larity solution. If the non-dimensional similarity vari- 
able is defined as 

|, 

r/ = : - (12) 
x/(4cqr) 

the velocity and temperature fields may be written 

Uh(q, r) = U,,(r)FO1) and O(q, r) = to(r)H(q). 

(13) 

The solutions for Pr ~ I [2], arranged in a convenient 
manner, are 

U,, = g-rq"r'°:v-'/J ( z )  
12  

k 

F =  - -  8 ( i~erfc(rl)-- i~erfc(~/(qpl5)))  
1 - -  Pr 

q,,(0~v,r) I 2 
Io--  k 

2 
H = exp (__q2)-2q erfc (q). (14) 

(The quantity i s erfc is a repeated integral of  the com- 
plimentary error function.) Note that the Prandtl 
number appears in the velocity rather than in the 
temperature solution, where it is usually expected. 
This change is caused by the use of  a thermally based 
length scale (2x/(er)), rather than the usual one based 
on viscosity. This flow is driven by a diffusion of  heat 
which is unaffected by fluid motion. Therefore, the 
coupling between momentum and heat transfer 
should only appear in the momentum equation. This 
situation is analogous to forced convection, in which 
the flow is not affected by heat transfer and the only 
coupling (and, therefore, Pr) is in the energy equation. 

2.3. Disturbances 
Having specified the base flow, equation (6) is sub- 

stituted into equations (I)-(5).  Recall that Vb = 0 and 
dPh/dy = 0, and that the base flow is independent 
of  x. Assuming that the disturbances remain much 
smaller than the base flow, e.g. Ub >> U', and sub- 
tracting out the purely base flow terms, the con- 
servation equations, in terms of  the disturbances, are:  

Ct l '  ('~ lg ' ~ U  b 1 gp' 
a +UI, ~ +c" ~ = vV2u" ~ -  +gil t  t" (15) 
U'C CX U_V p ~'A- 

& "  &'" I @' 
- -  + Uh ~ = vV~c ' -  =- (16) 
~?r c_v p c_l' 

?t" &' ?0 
+ U h : -  + V ' =  =~-rV2t ". (17) 

C'~ ¢ 'X  ('.l' 

The form of the stream function and temperature 
disturbances is postulated to be the first mode of  a 
Fourier  series solution to these equations : 

qs' = U,,6~b(q) exp [i(0~v-/TH] (18) 

t" = t<,s(q) exp [i(:~x- fiz)] (19) 

where ip~. = u' and - ip" = c', and ~b and s are complex 
in general. Using the ad hoc approximation that the 
system is quasistatic, that is, the growth rate of  the 
disturbances is much greater than the growth rate o1" 
the base flow [21], the r dependence of  the base flow in 
equations (l 5)-(17) is relatively weak and the solution 
can be Fourier  analyzed in .,, and r. This simplification 
is analogous to the parallel flow approximation made 
in steady boundary layer flows [22]. The two dis- 
turbances have the same wavelength and frequency 
due to the coupling of  the velocity and temperature 
fields. 

The eigenvalues, ~ and/7, are also both complex, in 
general 

~7 = c7 r + iff, (20) 

/7= /7r-t-ifli. (21) 

The real part o f ~  is the wave number, Re (~) = 27zt2, 
and 0~ is the spatial amplification rate. Re (/7) = 2rff 
is the physical frequency of  the disturbances, while 
Im (/7) is the temporal amplification rate. 

In most stability analyses of  two-dimensional 
downstream developing steady base flows, there is 
no temporal amplification, that is, /7i = 0. Extensive 
experimentation has shown that such disturbances 
grow in magnitude only with downstream distance. 
However, the present study follows the recent obser- 
vations [19] in one-dimensional transients. Figure 2 
shows the appearance of  the disturbances at different 
generalized downstream positions, X, as a function of  
generalized time, r. The local sensor data indicated 
that, during the one-dimensional regime, disturbances 
often arise and grow in time, amplifying sim- 
ultaneously over the entire one-dimensional region. 
Therefore,/7~ # 0, in general, and ffi = 0, always. 



Hydrodynamic stability of flow 981 

X 

1650 - 

1500 - 

1350 - 

1200 

10,50 

900 

750 

600 

450 

300 

150 
55 6~5 

~ o t i o n  

75 85 95 
"7- 

FtG. 2. Nondimensiona[ times for first observed disturbances 
at various downstream locations [19]. 

The generalizations of  the disturbance-related 
eigenvalues are : 

,5 

(~ = (4~TT)' 2. (22) 

Again using a quasistatic approximation,  the time 
derivatives of  U,, ¢,, and 6 are neglected and equations 
(18), (19) and (22) are applied to (15)-(17). The two 
momentum equations are cross differentiated and 
their difference is found to eliminate the pressure 
terms. The result, along with the disturbance energy 
equation, is : 

4 s 
= l i : ~ A , [ ~ . , _ 2 ~ _ , ~ , , + ~ + ( / ~ i L ) . , ]  (23) 

F -  s -  H'd~ - i~A* Pr 

where 

U,,6 291Yq"~Tr'- 
A* - - (25) 

These equations for a one-dimensional transient 
buoyancy-induced flow are in the same form as for the 
two-dimensional downstream developing flow, with 
three exceptions. The parameter A*(r) appears 
instead of  the modified Grashof  number 

G*(x) = 5 = 5 k , 5 - ~ , , /  " (26) 

The (4/Pr) coefficient appears in front of  the thermal 
coupling term, rather than the coefficient of unity 
found in the downstream developing flow formu- 
lation. This result is explained by the same reasoning 
as the position or  Pr in the base flow solutions, i.e. a 
thermal rather than a viscous length scale has been 
used. Finally, the base flow quantities, F, F" and H' ,  
are the one-dimensional transient base flow, rather 
than the two-dimensional steady state boundary layer 
solutions. 

Tile disturbance boundary conditions arc as 
follows. From the no-slip condition and assuming an 
impermeable wall 

4)(0) = qY(0) = 0 (27) 

Because the disturbance energy must be finite 

4'01 => ~- ) = ~ b ' ( t l  ~ :"~)  = sO1 ~ , :z  ) = 0 .  ( 2 8 )  

The thermal condition at the wall is generally more 
complicated bccause any thermal capacity in the wall 
material may have an important effect on the tem- 
peraturc disturbance amplitude there. The general flux 
boundary condition, including a surface thermal 
capacity per unit area of( '",  is 

~'0 ?0 
q" = c"_  - k ,  . (29) 

('T C 1' 

This condition yields the following disturbance con- 
dition at t 1 = O: 

i 
s(O) - A ,Q,13s ' (O)  (30) 

where Q* = (vc"/k~).  For the surface flux condition 
analyzed here, the thermal capacity effect is assumed 
to be negligible, for both the development of the dis- 
turbances and the base flow. This assumption is gen- 
erally true in the case of  thin surface elements in 
liquids. The surface used by Joshi and Gebfiart [19] 
had a Q* between 0.024 and 0.031 in the region in 
which disturbances were first recorded. The thermal 
disturbance boundary condition at the surface is taken 
as 

Q * ~ 0  and s ' ( 0 ) = 0 .  (31) 

2.4. Numer ica l  solutiml 
The system defined by equations (23) and (24), with 

the boundary conditions (27), (28) and (31 ), is solved 
by the method or  Heiber and Gebhart  [18]. This pro- 
cedure expresses the solutions, ~b and s, each as linear 
combinations of  three integrals, the inviscid (4), s).,  
the viscous uncoupled (qS, s)_, and the viscous coupled 

(4), s)~ : 

dp = B.~b. + B,_dp,_+ B~c~ 3 (32) 

s = B i s l  +B, . s , _+B3s> (33) 

Because it is awkward to use the boundary con- 
ditions at infinity, equation (28), the first order asymp- 
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totic solutions for large q are found for the six integrals 
in equations (32) and (33) 

4~i = exp (- :~q)  

q~_, = exp [ -  :~(~z-'- iA*/:t) I -~q] 

~]~ = exp [ - ~ ( ~ - ' - i A * [ ]  Pr)''-q] 

S I = . ~ ' ,  = 0  

(flA*) 2 Pr(I - Pr) 
s3 = ( _~_~A,/~ , Pr) '  2 ¢ , .  (34) 

To solve equations (23) and (24) for a given P/, the 
values of  two of the four parameters (A*, :t r, [L [J,) 
are assumed. The other two are initially guessed and 
are to be changed iteratively toward convergence. The 
equations are integrated three times by a fourth order 
Hammings modified predictor-corrcctor  method, 
each time using a different integral, (4,,s)., (4,,s)_~ or 
(4~,s)~ from equation (34), for the boundary con- 
ditions at infinity. Because this system has homo- 
gencous equations and boundary conditions, it is an 
eigenvalue problem and the solution is known only to 
an arbitrary constant. Therefore, Bb can be con- 
venicntly set to unity. Then B, and B3 arc found 
from the velocity boundary conditions, equation (27). 
Using three constants, the value ofs ' (0)  is determined. 
This set of  three integrations is repeated twice, first 
varying one guessed parameter slightly, then the 
other. These results are then used by a finite difference 
Nachtsheim-Swigert  method [23] to calculate new 
guesses for the two parameters. This process is con- 
tinued until s'(0) < I10 "l- 

The outer boundary at which equations (34) are 
used is called Pledge- This value and the step size, Aq, 
are found by trial and error, using as small an q¢,j~ 

and as large a Aq as possible without significantly 
altering any converged results. 

3 .  R E S U L T S  A N D  D I S C U S S I O N  

3.1. Eigenvalues and disturbance amplification 
The eigcnvalues are found by the iterative process 

described previously and are known to at least four 
significant digits. A plot of/~r (frequency) vs A* with 
constant /~ (temporal amplification rate) contours, 
for s'(0) = 0 and Pr = 6.7, is shown in Fig. 3. This 
stability plane shows the temporal amplification rates 
of  the disturbances as functions of  frequency, [~r- The 
vigor parameter,  A*(r), has the same role here in the 
Orr-Sommerfe ld  equations as does G*(x) in two- 
dimensional buoyancy driven convection and Re (x) 
in forced flows. 

The first disturbance component  to be amplified 
crosse~ the [~ = 0 curve, the location of  neutral stab- 
ility and A* = 22.6, at about [:~r = 0.01. This curve is 
calculated up to a maximum [Jr of  0.0617, at A* = 377. 
Beyond this location a converged solution could not 
be found with the present method, due to large differ- 
ences in the order of  magnitude of the six integrals in 
equations (32) and (33). For  the lower frequencies, 
[:~ < 0.02, calculations were carried out far enough in 
A* to include experimental data from [19]. At higher 
frequencies, calculations were carried out as far as 
possible, within the limitation mentioned above. Clos- 
ure of  three higher amplification rate contours, [J~, are 
shown in the region calculated. Although not shown 
in Fig. 3, the [3~ = 0.001 contour  closes at A* ~ 4000. 

Inviscid analysis, which solves the Orr -Sommerfe ld  
equations at A* =~ ~ ,  predicts that laminar flows with 
a point of  inflection in the velocity profile are unstable 

0.07 I I I I I 

0 . 0 6  • s , :  

0 . 0 5  

0.04 

0 . 0 : 3  

0 . 0 2  ' 

" " v - -  _ R - O . t  

0 . 0 1  ....... ;---_" _ R - o . =  . . . . . . . . . . . . . . . . . . . . . . .  : 

0 . 0 0  I , I , I , I , I i 
o ~oo zooo z~oo 2000 2600 3ooo 

FIG. 3. Stability plane for Pr = 6.7, uniform flux surface, s'(O) = 0 ( . . . .  , constant R; - - -  , constant ~i; 
A, disturbances due to leading edge effect; V, disturbances in one-dimensional regime [19]). 



Hydrodynamic stability of flow 983 

over a finite range of  frequency, fl,, in the limit of  
infinite A* [24]. The base flow studied here has such a 
point of inflection, so the neutral curve, [:~ = 0, should 
approach some non-zero, finite value for infinite A*. 
This non-closure of  the neutral stability curve would 
indicate that a certain range of  frequencies will be 
continuously amplified for all subsequent times, that 
is, for all values of  A*, as long as the disturbance 
amplitudes are small enough that the linear approxi- 
mation is valid. 

There are two general components  of  disturbance 
growth in this flow. One is the growth of  disturbance 
amplitudes, ¢ '  and t'. due to the temporal growth of  
the base flow quantities, Uo, 6 and t,,. This effect is 
not of  interest here because it does not cause the 
disturbances to grow or decay relative to the base flow 
and therefore does not contribute to transition. This 
effect is removed from the analysis in the development 
of equations (23) and (24). The second type of  dis- 
turbance growth or decay is the temporal change in 
the exponential terms in equations (18) and (19). 
These terms are a measure of  the rate of  change of  
disturbance amplitudes relative to the base flow. This 
effect is modelled by the Orr Sommerfeld equations 
and it is of  interest because transition occurs only if 
the disturbance amplitude grows more rapidly than 
the base flow. 

The only experimental data available for this tran- 
sient configuration and flow regime are those given 
by Joshi and Gebhart  [19]. From their plots of  dis- 
turbance behavior through time during the one- 
dimensional regime, it appears that the principal 
disturbance frequency component  remains approxi- 
mately constant at later times. However,  in Fig. 3, the 

generalized frequency, fir = ~r(Uo/6), is a function of  
time. The best way to examine the behavior of  a dis- 
turbance frequency component  through time is along 
a constant physical frequency path, f~*, where 

f~* =/ t r (A*)  "-'. (35) 

This transformation eliminates the time dependence 
in the nondimensionalized physical frequency, f~*. A 
plot off~* vs A*, with constant/3~ contours, is shown 
in Fig. 4. 

The neutral curve in Fig. 4 shows that the first 
calculated disturbance frequency component  becomes 
unstable at A*, = 22.6 and f i * =  0.048. This for- 
mulation predicts that this is the first disturbance com- 
ponent to be amplified. However, Fig. 4 shows that 
this component  is not the most highly amplified at 
later times. Much more highly amplified components 
are found at higher frequencies for example, 
~* ~ 0.60 appears to be the most significantly ampli- 
fied, or characteristic, frequency after A* ~ 1500. This 
property also appears in the two-dimensional steady 
flows [16]_ 

Naturally arising disturbance data, from Joshi and 
Gebhart  [19], are plotted on Figs. 3 and 4. These 
points are seen to be in two distinct groups. The first 
group arises at lower A* and corresponds to the ten 
data points in Fig. 2 which lie along the solid curve_ 
These disturbances, • in the figures, arise approxi- 
mately at the same time as the theoretical prediction 
of  the arrival of  the leading edge effect [12]. Such 
disturbances apparently do not arise by purely one- 
dimensional mechanisms and they are not modelled 
by the analysis here. On the other hand, the majority 
of  these measured frequencies do lie very close to the 
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in one-dimensional regime [19]). 
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particular frequency off~* = 0.39_ The other two data 
points of  the leading edge effect which do not occur 
at this frequency did not correlate in terms of  the 
heat flux, the downstream position at which they were 
measured or the time at which they arose. 

The second group of measured disturbance fre- 
quencies, the points ~ ' ,  arose purely on one-dimen- 
sional transient regions of  the flow, downstream of 
the propagating leading edge effect. The frequencies 
are higher than the calculated most favored frequency 
(f~* ~ 0.6). Figure 3 appears to have better agreement 
with these data than Fig. 4. However, it must be 
remembered that fl, is time dependent, while ~* is 
not. Because the physical frequencies appear to be 
time independent during the time in which they were 
measured, Fig. 4 presents a clearer picture of  the 
temporal amplification of  particular frequency 
components.  

There are several reasonable explanations why 
these data do not fall as close to the predicted charac- 
teristic frequency as do comparisons of  data and cal- 
culations for steady, downstream developing bound- 
ary layer flows. For  example, the principal physical 
disturbance frequency actually may vary in time. The 
experimental data in ref. [19] capture only two or 
three full periods of  the disturbances, between the 
time of  their appearance and the time of  the arrival 
of  the leading edge effect. This effect terminates the 
one-dimensional regime. While the present analysis 
uses the idealization of  an infinite surface with no 
leading edge, the experiments correspond to finite sur- 
faces. Therefore, the period in which data may be 
collected is limited. There are not sufficient data to 
indicate if the frequency might change over longer 
times for larger disturbance amplitudes. 

Another  possible cause of  the discrepancy is the 
applicability of  the quasistatic approximation used in 
the analysis. This approximation is analogous to the 
parallel flow approximation,  which is commonly and 
successfully used in two-dimensional flows_ A quasi- 
static analysis is appropriate if it can be shown that 
the acceleration of  the flow is small relative to the 
temporal growth of  the disturbances. As an indication 
of these relative accelerations, the ratio of  the time 
derivatives of  the base and disturbance velocities, R, 
is 

~ln U./gln u'[ 
R =  ~z / t~r << 1. (36) 

Values of  R are shown in Table 1 for four different 
values of  D*, over a range of  A*. The numerator  
above is evaluated from the base flow solution in 
Section 2.2 for the conditions of  the experimental 
data [19]. The denominator  was calculated from the 
results given here_ Some resulting R values are plotted 
on Figs. 3 and 4. It is seen in these figures that the 
approximation is not valid for low values of  frequency 
or A*. It is, however, valid in the region near the 
experimental data. Therefore, the position of  the fl~ 

Table 1. Values for R for Pr = 6.7, uniform flux surface, 
s ' ( 0 )  = 0 

A* 0.120 0.522 0.738 1.1 

NSC 1.640 0.419 0.251 0.129 
500 0.819 0.215 0.155 0.105 

1000 0.614 0.153 0.110 0.074 
[500 0.514 0.125 0.090 0.061 
2000 0.451 0.108 0.078 - -  
2400 0.422 0.099 0.071 - -  

contours, especially the lower frequency section of  the 
neutral curve, are not known accurately. 

Another  important  question is the effect of  the 
Prandtl number, Pr, on the temporal occurrence of  
instability and disturbance growth. It appears twice 
in the Orr -Sommerfe ld  equations used here, in the 
coefficient for the thermal diffusion term and in the 
thermal coupling term. In the steady boundary layer 
flows [14], the effect of  the P," occurs only in the 
diffusion term. There, increasing Pr stabilizes the flow, 
that is, the neutral curve lies at larger values of  the 
vigor parameter,  G*. The same effect arises in these 
transients, as seen in Fig. 5, at higher frequencies. Of  
course, the positions of  these neutral curves are not 
known exactly due to the inapplicability of  the quasi- 
static approximation.  However,  since the positions 
are more accurately known at high f~* and because 
the relative positions of the neutral curves should 
indicate general shifts in the other fl~ contours, it is 
not unreasonable to draw some qualitative con- 
clusions from these results. 

The increasing stabilization with higher Pr is due 
to the corresponding decrease in the maximum value 
of  F(q), the base flow velocity, as seen in Fig. 6. It is 
this velocity, with the temperature coupling, which 
drives disturbance growth. The base flow similarity 
temperature field, H, is independent of  the changes in 
Pr, see equation (14). The qualitative effect of  Pr on 
the behavior of  the neutral curve is the same in the 
steady flow [14], where the coefficient of  the coupling 
term is unity and therefore not dependent on P,. In 
transients, it is 4/Pr. The values of  this coefficient 
which arise here are 5 .74 .6 ,  for 0.7 < P r <  6.7. 
Apparently this variable coefficient does not  alter sig- 
nificantly that behavior, at least when it is of  order 
o n e .  

3.2. Eigenjimctions 
Another  important  result of  this analysis is the dis- 

tribution of  the disturbance eigenfunctions_ These 
complex functions are plotted as real disturbance 
velocity and temperature amplitudes, normalized by 
their maximum values 

u' x/(Re (4Q'- + Im (4")-') 

u~,.~ (x/(Re (~b')-" + I r a  (~b)-))m~ 
(37) 
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Profiles of  u ' / u ' , , , ~  and t ' / t ' ~ , , ~  are shown in Figs. 7 and 
8, for several values of  A* and f~*. The location of  
the maximum base velocity, the point of  inflection in 
the base velocity and the edges of  both the base flow 
thermal and velocity boundary regions are also 
marked on these plots by vertical lines along the 
abscissas_ 

Inviscid theory suggests that the maximum of the 
disturbance amplitude should arise at the inflection 
point of  the base velocity [24]. As seen in the figures, 

the maximum disturbance velocity amplitude at the 
neutral stability condition occurs between this point 
and the point of  maximum base velocity. As A* 
increases, the flow will tend toward an inviscid limit. 
The peaks for the higher f~* are seen to move toward 
the point of  inflection, as expected. Another  effect of  
increasing A* is a decline in the relative amplitude of  
the outside peak of  the velocity profile, compared 
to the primary peak. This decrease arises as viscous 
Friction, the principal remaining force outside the base 
and disturbance temperature boundary regions, 
becomes relatively less important as A* increases_ In 
Fig. 7(b), where f~* = I. 1, a third peak appears inside 
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FIG. 6. Base flow velocity and temperature profiles for uniform surface flux condition ( . . . .  , H (all P r )  ; 

• , F ( P r  = 0_7) : . . . .  , F ( P r  = 3.0) ; . . . . .  , F ( P r  = 5.0) ; . . . .  , F ( P r  = 6.7)). 
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the primary peak. It becomes more distinct with larger 
A*. In Fig. 7(a), for D* = 0.522, the profile for the 
highest value of  A* begins to show a change in slope 
inside of  the main peak. This trend indicates the begin- 
nings of  a similar peak. This change is correlated with 
a change in phase velocity 

/% 
Cr = (39) 

~ r  

as seen in Table 2. The phase velocity decreases from 
some peak value at low A*, along all three constant 
f~* curves shown in the table. As c, decreases, the 
third peak begins to appear in Fig_ 7(a), Cr = 0.047. 
It becomes more and more distinct as c, decreases 
further along the D* = 1. I line, see Fig. 7(b). 

The shapes of  most of  the disturbance temperature 
profiles remain of  about  the same forTn, over a range 
of  Q* and A*. There are two exceptions_ The first is 
the thickness of  the thermal disturbance boundary 
region, which decreases with higher A* and Q*. The 
second is the value of  s(0), the thermal disturbance 

amplitude at the surface. The boundary condition 
applied there is s'(0) = 0_ However,  as D* increases, 
amounting to an increase in fir, or as A* increases, 
s(0) in equation (29) begins to approach the value it 
would have if Q* was large, i.e. s(0) = 0. Figures 8(a) 
and (b) show that for higher A* and D*, s(0) decreases 
toward zero. 

4. CONCLUSIONS 

Using linear stability theory, the equivalent of  the 
Orr -Sommerfe ld  equations for the stream function 
and temperature perturbations in a transient one- 
dimensional buoyancy driven flow have been for- 
mulated. The boundary condit ion which initiates the 
flow is a constant and uniform heat flux applied to 
the surface for time greater than zero. The equations 
have been solved for the flux condition for Pr = 6.7, 
assuming s'(0) = 0. This assumption is appropriate 
for thin surfaces with low thermal capacity relative to 
the adjacent fluid, as for water. Two types of  stability 
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Table 2. Phase velocity c r, for Pr = 6.7, 
uniform flux surface, s'(0) = 0 

A* 0.120 0.522 I.I 

NSC 0.0669 0.0476 0.0450 
500 0.0718 0.0484 0.0445 

I000 0.0705 0 .0478  0.0435 
1500 0.0693 0.0475 0.0428 
2000 0.0686 0.0472 - -  
2400 0.0680 0.0470 - -  

planes are given. They cover the time at which exper- 
imental results apply and also frequencies over a band 
higher and lower than those measured. Profiles of  
disturbance temperature and velocity show both the 
effect of  frequency, f~*, and of  the vigor parameter,  
A*, on both the shapes of  the curves and the values 
of the surface amplitude, s(0). Then, using the same 
boundary conditions, the neutral curves for several Pr 
have been found_ The neutral curves indicate a higher 
degree of  stability with larger Pr. These results also 
show that the Pr dependence in the thermal coupling 

term does not have a large qualitative effect on the 
neutral stability condition. 

While the frequency data do not have the extremely 
close agreement with the calculated characteristic fre- 
quency found in the steady downstream developing 
boundary layer flows, the available experimental 
results [19] are in reasonable agreement with the 
analysis, despite the fact that the quasistatic approxi- 
mation is not valid at low frequency or low A*. The 
data is based on a very few disturbance oscillations 
before the leading edge effect arrives and the behavior 
over longer time periods has not been measured. Use- 
ful future measurements should determine dis- 
turbance frequencies at higher A*, as well as the actual 
disturbance amplitude distributions across the bound- 
ary region. Also, improved methods of  calculation 
could be used to predict the behavior at higher A*, 
where the quasistatic approximation is more appli- 
cable. This formulation provides a reasonable, first 
order method of  predicting disturbance growth in a 
transient one-dimensional buoyancy-induced flow. 
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